
Query Language and Engine and Identifiers
Position Paper

DRAFT 1.0

Scott Oster and Tahsin Kurc
Ohio State University

01/04/2005

Abstract

This paper will briefly describe the impact the common query language and engine will
have on the identifier requirements. We consider two main types of identifiers:
resolvable and physical (non resolvable). For the purposes on this paper we will
consider a resolvable identifier to be one which must be “resolved” to locate the actual
physical location of the data. A physical identifier is one which can directly be used to
access data (such as a URI).

Resolvable Identifiers

If resolvable identifiers are used, there must be a service which can be used to resolve an
identifier into a physical identifier. While it is expected that a query service will be able
to return data given either a physical or resolvable identifier, it is not expected that a
query service will be the primary service utilized for identifier resolution.

It is also not expected that identifiers will be the only mechanism to perform joins
between databases. Consider a user who wants to do comparisons between two patient
populations and that the information collected on the two populations is stored in separate
databases. The user may want to submit a query that will do a join between the databases
based on geographic location (e.g., county). The user may also want to execute a query
that will perform a join on lab results (e.g., find all the patients from the two populations
where the blood pressure is the same). In these cases, the user does not explicitly make
use of identifiers, though it is likely the query engine will make extensive use of them in
carrying out the query execution plan. It can be expected that in many cases the end user
will not remember the identifiers or care about specifying identifiers in a query.

If the query engine is expected to retrieve remote data from resolvable identifiers when
performing joins and there are multiple possible redundant physical locations for the data,
the resolution service should support the ability to specify resolution preferences. For
example, the query engine will certainly prefer pulling data from local sources, and may
prefer to increase or limit the number of involved data services in a join if possible.

It is currently unclear how identifiers will be used to store data in the presence of both
resolvable and physical identifiers. If data services use both to store references to remote
data, it may make identifier comparison difficult for query engines as it would not be able
to do a simple “=” operation to compare a physical identifier with a resolvable one. It

also bears mentioning some resolving schemes may not support reverse lookup of
physical identifier to resolvable identifier. Furthermore, there may be a “one to many
relationship” in either direction, which significantly increases the complexity of
comparing these two types of identifiers with each other.

Physical Identifiers

If non-resolvable, physical identifiers are used, data will be more tightly coupled to the
service it is stored in, but query engines will have less complexity to deal with.

Both resolvable and physical identifiers share some characteristics with respect to their
impact on query engines. If identifiers are used as foreign keys in one data service, to
point to data in another data service, it is expected that the query language should support
retrieval and introspection of the remote data. From a performance perspective, we need
to have support for caching resolved identifiers and compact, machine-readable
representations of identifiers. Caching is important as if the query engine has to contact
the identifier resolution service for each result returned from the data source, execution of
queries will take too long in many cases. Another approach could be to have a compact
representation (e.g., 64-bit or 128-bit number) for each identifier and store this
information in the database as part of the data element. In that case, the query engine uses
the compact representation directly when performing joins and can retrieve the resolvable
identifier from the identifier resolution service when needed.

If a data service contains a collection of identifiers that, for example, point to Genes, one
should be able to express a query that says “Give me the Genes that have the name =
BRCA1”. In order to support this, the query engine must be aware that the data stored are
identifiers. This implies that a common data type must be defined for identifiers and
leveraged by data services. An alternative approach would be to not place restrictions on
the data types, but introduce a resolve(id) operator (or a similar operator) into the
query language which could be used to explicitly interpret its argument as an identifier.

Another facet of identifiers which will greatly impact query engines is the amount of
information that is encoded into them directly. It has been proposed that various aspects
could be encoded into the identifier itself, such as: data type, version number, concept
forking and merging, and other various metadata. If such things are encoded in the
identifiers, undoubtedly the query engines will be expected to utilize such information
when executing queries. This seems attractive in that remote services do not need to be
contacted to attain such information, but there is a balance, as too much implied
information may put a heavy burden on the query engine. For example, when concepts
like identifier fork and merge are supported, these semantics will probably be expected to
be respected when performing joins. For example, if an identifier has been forked, and a
query is executed, should the query engine be expected to search for each of the resultant
children identifiers when performing an equi-join on the original identifier? It is our
opinion such things should be handled explicitly in either the data or a semantic layer
should support representation of such concepts, rather than implicitly in the query
execution.

